On Convergence of Support Operator Method Schemes for Differential Rotational Operations on Tetrahedral Meshes Applied to Magnetohydrodynamic Problems
نویسندگان
چکیده
The problem of constructing and justifying the discrete algorithms support operator method for numerical modeling differential repeated rotational operations vector analysis (curlcurl) in application to problems magnetohydrodynamics is considered. Difference schemes on unstructured meshes do not approximate equations local sense. Therefore, it necessary prove convergence these exact solution, which possible after analyzing error structure their approximation. For this analysis, a decomposition space mesh functions into an orthogonal direct sum subspaces potential vortex fields introduced. Generalized centroid-tensor metric representations tensor (div, grad, curl) are constructed. Representations have flux-circulation properties that integrally consistent spatial irregular structure. On smooth solutions model magnetostatic tetrahedral with first order accuracy rms sense, constructed difference proved. work can be used solve physical discontinuous magnetic viscosity, dielectric permittivity, or thermal resistance medium.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
High-Order Flux Reconstruction Schemes for LES on Tetrahedral Meshes
The use of the high-order Flux Reconstruction (FR) spatial discretization scheme for LES on unstructured meshes is investigated. Simulations of the compressible Taylor-Green vortex at Re = 1600 demonstrate that the FR scheme has low numerical dissipation and accurately reproduces the turbulent energy cascade at low resolution, making it ideal for high-order LES. To permit the use of subgrid-sca...
متن کاملAnalysis of Compatible Discrete Operator Schemes - for Elliptic Problems on Polyhedral Meshes
Compatible schemes localize degrees of freedom according to the physical nature of the underlying fields and operate a clear distinction between topological laws and closure relations. For elliptic problems, the cornerstone in the scheme design is the discrete Hodge operator linking gradients to fluxes by means of a dual mesh, while a structure-preserving discretization is employed for the grad...
متن کاملSimulating Drilling on Tetrahedral Meshes
Bone drilling is a fundamental task in several surgical procedures, including mastoidectomy, cochlear implantation, orbital surgery. It consists in eroding the part of the bone in contact with the tip of the surgical tool when a sufficient pressure is exerted. Since the bone is an almost rigid material, the bone drilling simulations usually employ voxel-based representations of the bone, so tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10203904